

Introduction

- 1. Trauma is the leading cause of death in individuals up to 45 years old and the fourth leading cause of death overall for all ages.¹
- 2. Uncontrolled hemorrhage is the leading cause of early mortality in major trauma.²
- 3. Trauma-associated hemorrhagic death occurs as an effect of uncontrolled bleeding and traumainduced coagulopathy.³
- 4. Tranexamic acid is an antifibrinolytic medication that works by forming a reversible complex that displaces plasminogen from fibrin resulting in inhibition of fibrinolysis.⁴
- 5. Tranexamic acid is readily available, simple to administer, relatively inexpensive, with minimal side effects.

Pharmacology				
	Tranexamic Acid			
Dose	 Loading dose: 1 g over 10 minutes started within 3 hours of injury 2 gram via slow IV Push* 			
	Maintenance: 1 g over the next 8 hours as a continuous infusion			
Administration	Loading dose: administer undiluted			
	Max rate:100 mg/minute			
	 For continuous IV infusions: dilute with compatible solutions and administer at a rate not to exceed 100 mg/minute 			
PK/PD	Distribution: Vd: IV: 9 to 12 L			
	Protein binding: ~3%, primarily to plasminogen			
	Half-life elimination: ~2 hours			
	Excretion: Urine (>95% as unchanged drug)			
Adverse Effects	Hypersensitivity reactions, ocular effects, seizures and myoclonus, thromboembolic effects, abdominal pain, headache, back pain			

*Emerging data from prehospital and military data use

Overview of Evidence				
Author, year	Design/ sample size	Intervention & Comparison	Outcome	
Morrison, 2012	∘ Observational (n=896)	∘ TXA 1g bolus + repeat prn vs placebo.	 All-cause mortality overall within 48 hours and in hospital mortality significantly reduced with TXA 	
Roberts, 2013	∘ Randomized placebo- controlled (n = 20,2011)	∘ TXA 1g bolus + 1g over 8 hours vs placebo	 All-cause mortality at 28 days was significantly reduced by TXA Treatment within 1 hour and 1-3 hours from injury significantly reduced the risk of death due to bleeding 	
Sprigg, 2018	 Randomized placebo- controlled (n= 2325) 	∘ TXA 1 g bolus + 1g over 8 h infusion vs placebo	 Patients in the tranexamic acid group experienced a reduction in early deaths and serious adverse events, but not long term functional status 	
Roberts, 2019	 Randomized, placebo- controlled (n=12737) 	 ○ TXA 1 g bolus + 1g over 8 hours vs placebo 	 Treatment within 3 h of injury reduced head injury-related death. 	
Rowell, 2020	 Double-blinded, randomized (n= 966) 	• TXA 1 g bolus + 1 g 8-hour infusion vs 2 g bolus bolus + placebo infusion vs placebo bolus + placebo infusion	 No statistically significant difference in 28-day mortality, favorable neurologic function, 6 month disability rating score, or progression of intracranial hemorrhage 	
Roberts, 2020	 Randomized placebo- controlled (n = 12,009) 	 ○ TXA 1 g + 3g infusion vs placebo 	 No significant difference in death due to bleeding within 5 days 	
Bossers, 2021	• Prospective observational cohort (n = 1827)	 Pre-hospital TXA vs no TXA patients with TBI 	 No association between TXA and mortality was found at 30 days TXA was associated with increased mortality in patients with isolated TBI 	
Guyette, 2021	 Double-blind, placebo- controlled, randomized (n= 927) 	 TXA 1 g bolus only vs TXA 1g + 1 g infusion vs TXA 1g bolus + 1g bolus + 1g infusion vs placebo bolus + placebo infusion 	 Prehospital administration of tranexamic acid compared with placebo did not result in a lower rate of 30-day mortality in this population. No differences were found in 24-hour mortality or in-hospital mortality 	
Mahmood, 2021	• Randomized placebo- controlled (n = 1767)	∘ TXA 1 g bolus + 1 vs placebo	 No evidence that TXA prevents IPH expansion 	
Gruen, 2023	 Double-blind, randomized, placebo-controlled (n = 1310) 	 TXA 1 g bolus prior + infusion vs matched placebo 	 No difference in survival with a favorable functional outcome at 6 months No difference in 6 months mortality 	

Conclusions

- Tranexamic acid has been studied in pre-hospital, hospital, and combat setting in patients who have sustained a traumatic injury
- Efficacy of tranexamic acid was demonstrated in some studies above, while other studies failed to show a significant difference in outcomes
- Dosing of tranexamic acid varied significantly in the above studies, however one dosing regimen has been widely adopted

• Tranexamic acid has minimal adverse effects, is relatively inexpensive, and readily available in many settings

References

- 1. Rhee P, Joseph B, Pandit V, et al. Increasing trauma deaths in the United States. Ann Surg. 2014;260(1):13-21. doi:10.1097/SLA.000000000000000000
- 2. Callcut RA, Kornblith LZ, Conroy AS, et al. The why and how our trauma patients die: A prospective Multicenter Western Trauma Association study. J Trauma Acute Care Surg. 2019;86(5):864-870. doi:10.1097/TA.00000000002205
- Latif RK, Clifford SP, Baker JA, et al. Traumatic hemorrhage and chain of survival. Scand J Trauma Resusc Emerg Med. 2023;31(1):25. Published 2023 May 24. doi:10.1186/s13049-023-01088-8
- 4. Hijazi N, Abu Fanne R, Abramovitch R, et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood. 2015;125(16):2558-2567. doi:10.1182/blood-2014-08-588442
- Cai J, Ribkoff J, Olson S, et al. The many roles of tranexamic acid: An overview of the clinical indications for TXA in medical and surgical patients. Eur J Haematol. 2020;104(2):79-87. doi:10.1111/ejh.13348
- 6. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg. 2012;147(2):113-119. doi:10.1001/archsurg.2011.287
- Roberts I, Shakur H, Coats T, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1-79. doi:10.3310/hta17100
- Sprigg N, Flaherty K, Appleton JP, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391(10135):2107-2115. doi:10.1016/S0140-6736(18)31033-X
- 9. CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury
- 10. Micromedex [Electronic version]. Greenwood Village, CO: Truven Health Analytics. Retrieved January 17, 2021, from <u>http://www.micromedexsolutions.com/</u>